Pure Mathematics 3

Solution Bank

Exercise 2D

1 a i $y \in \mathbb{R}$

ii Let
$$y = f(x)$$

 $y = 2x + 3$
 $x = \frac{y-3}{2}$
 $f^{-1}(x) = \frac{x-3}{2}$

iii The domain of $f^{-1}(x)$ is $x \in \mathbb{R}$ The range of $f^{-1}(x)$ is $y \in \mathbb{R}$

b i $y \in \mathbb{R}$

- ii Let y = f(x) $y = \frac{x+5}{2}$ x = 2y-5 $f^{-1}(x) = 2x-5$
- iii The domain of $f^{-1}(x)$ is $x \in \mathbb{R}$ The range of $f^{-1}(x)$ is $y \in \mathbb{R}$

c i
$$y \in \mathbb{R}$$

ii Let
$$y = f(x)$$

 $y = 4 - 3x$
 $x = \frac{4 - y}{3}$
 $f^{-1}(x) = \frac{4 - x}{3}$

iii The domain of $f^{-1}(x)$ is $x \in \mathbb{R}$ The range of $f^{-1}(x)$ is $y \in \mathbb{R}$

d i $y \in \mathbb{R}$

ii Let
$$y = f(x)$$

 $y = x^3 - 7$
 $x = \sqrt[3]{y+7}$
 $f^{-1}(x) = \sqrt[3]{x+7}$

iii The domain of $f^{-1}(x)$ is $x \in \mathbb{R}$ The range of $f^{-1}(x)$ is $y \in \mathbb{R}$

Pure Mathematics 3

- 2 a Range of f is $f(x) \in \mathbb{R}$ Let y = f(x)y = 10 - xx = 10 - y $f^{-1}(x) = 10 - x, \{x \in \mathbb{R}\}$
 - **b** Range of f is $f(x) \in \mathbb{R}$ Let y = g(x) $y = \frac{x}{5}$ x = 5y
 - $g^{-1}(x) = 5x, \{x \in \mathbb{R}\}$
 - c Range of f is $f(x) \neq 0$ Let y = h(x) $y = \frac{3}{x}$ $x = \frac{3}{y}$ $h^{-1}(x) = \frac{3}{x}, \{x \neq 0\}$
 - d Range of f is $f(x) \in \mathbb{R}$ Let y = k(x)y = x - 8x = y + 8 $k^{-1}(x) = y + 8, \{x \in \mathbb{R}\}$

Solution Bank

3

The inverse function is $g^{-1}(x) = 4 - x$ Now {Range g} = {Domain g^{-1} } and {Domain g} = {Range g} Hence, $g^{-1}(x) = 4 - x$, { $x \in \mathbb{R}, x < 4$ }

Although g(x) and $g^{-1}(x)$ have identical equations, their domains and hence ranges are different, and so are not identical.

4 a i Maximum value of g when x = 3Hence $\{g(x) \in \mathbb{R}, 0 < g(x) \le \frac{1}{3}\}$

ii
$$g^{-1}(x) = \frac{1}{x}$$

iii Domain g⁻¹ = Range g ⇒ Domain g⁻¹ : {x ∈ ℝ, 0 < x ≤ $\frac{1}{3}$ } Range g⁻¹ = Domain g ⇒ Range g⁻¹(x): {g⁻¹(x)∈ℝ, g⁻¹(x) ≥ 3}

Pure Mathematics 3

Solution Bank

- **b** i Minimum value of g(x) = -1when x = 0Hence $\{g(x) \in \mathbb{R}, g(x) \ge -1\}$
 - ii Letting $y = 2x 1 \Rightarrow x = \frac{y+1}{2}$ Hence $g^{-1}(x) = \frac{x+1}{2}$
 - iii Domain $g^{-1} = Range g$ $\Rightarrow Domain g^{-1} : \{x \in \mathbb{R}, x \ge -1\}$ Range $g^{-1} = Domain g$ $\Rightarrow Range g^{-1}(x) : \begin{cases} g^{-1}(x) \in \cdot, \\ g^{-1}(x) \ge 0 \end{cases}$

iv

4 c i $g(x) \rightarrow +\infty \text{ as } x \rightarrow 2$ Hence $\{g(x) \in \mathbb{R}, g(x) > 0\}$

ii Letting
$$y = \frac{3}{x-2} \Rightarrow x = \frac{2y+3}{y}$$

Hence $g^{-1}(x) = \frac{2x+3}{x}$

iii Domain $g^{-1} = \text{Range } g$ $\Rightarrow \text{Domain } g^{-1} : \{x \in \mathbb{R}, x > 0\}$ Range $g^{-1} = \text{Domain } g$ $\Rightarrow \text{Range } g^{-1}(x) : \{g^{-1}(x) \in \mathbb{R}, g^{-1}(x) > 2\}$

iv

- **d** i Minimum value of g(x) = 2when x = 7Hence $\{g(x) \in \mathbb{R}, g(x) \ge 2\}$
 - ii Letting $y = \sqrt{x-3} \Rightarrow x = y^2 + 3$ Hence $g^{-1}(x) = x^2 + 3$
 - iii Domain $g^{-1} = \text{Range } g$ $\Rightarrow \text{Domain } g^{-1} : \{x \in \mathbb{R}, x \ge 2\}$ Range $g^{-1} = \text{Domain } g$ $\Rightarrow \text{Range } g^{-1}(x) : \{g^{-1}(x) \in \mathbb{R}, g^{-1}(x) \ge 7\}$

Pure Mathematics 3

4 d iv y $g^{-1}(x) = x^2 + 3$ y = x (2, 7) x (7, 2) y = x (7, 2)

Solution Bank

- e i $2^2 + 2 = 6$ Hence $\{g(x) \in \mathbb{R}, g(x) > 6\}$
 - ii Letting $y = x^2 + 2$ $y - 2 = x^2$ $x = \sqrt{y - 2}$ Hence $g^{-1}(x) = \sqrt{x - 2}$

iii Domain
$$g^{-1} = \text{Range } g$$

 $\Rightarrow \text{Domain } g^{-1} : \{x \in \mathbb{R}, x > 6\}$
Range $g^{-1} = \text{Domain } g$
 $\Rightarrow \text{Range } g^{-1}(x) : \begin{cases} g^{-1}(x) \in \mathbf{k}, \\ g^{-1}(x) > 2 \end{cases}$

iv

- **f** i Minimum value of g(x) = 0when x = 2Hence $\{g(x) \in \mathbb{R}, g(x) \ge 0\}$
 - ii Letting $y = x^3 8 \Rightarrow x = \sqrt[3]{y+8}$ Hence $g^{-1}(x) = \sqrt[3]{x+8}$

4 f iii Domain $g^{-1} =$ Range g \Rightarrow Domain $g^{-1} : \{x \in \mathbb{R}, x \ge 0\}$

Range
$$g^{-1} = \text{Domain } g$$

 \Rightarrow Range $g^{-1}(x) : \begin{cases} g^{-1}(x) \in \cdot, \\ g^{-1}(x) \ge 2 \end{cases}$

P Pearson

5 $t(x) = x^2 - 6x + 5, \{x \in \mathbb{R}, x \ge 5\}$

Let $y = x^2 - 6x + 5$ $y = (x-3)^2 - 9 + 5$ (completing the square) $y = (x-3)^2 - 4$

This has a minimum point at (3, -4)

For the domain $x \ge 5$, t(x) is a one-to-one function so we can find an inverse function.

Make *y* the subject:

$$y = (x-3)^{2} - 4$$
$$y+4 = (x-3)^{2}$$
$$\sqrt{y+4} = x-3$$
$$\sqrt{y+4} + 3 = x$$

Pure Mathematics 3

Solution Bank

5 (continued)

Domain t^{-1} = Range t \Rightarrow Domain $g^{-1} : \{x \in \mathbb{R}, x \ge 0\}$ Hence, $t^{-1}(x) = \sqrt{x+4} + 3, \{x \in \mathbb{R}, x \ge 0\}$

6 a $m(x) = x^2 + 4x + 9$, $\{x \in \mathbb{R}, x > a\}$ Let $y = x^2 + 4x + 9$ $y = (x + 2)^2 - 4 + 9$

$$y = (x+2)^2 - 4 + 5$$

 $y = (x+2)^2 + 5$

This has a minimum value of (-2, 5)

For m(x) to have an inverse it must be one-to-one. Hence the least value of *a* is -2

b Changing the subject of the formula:

$$y = (x+2)^{2} + 5$$
$$y-5 = (x+2)^{2}$$
$$\sqrt{y-5} = x+2$$
$$\sqrt{y-5} - 2 = x$$
Hence m⁻¹(x) = $\sqrt{x-5} - 2$

6 c Domain of $m^{-1}(x)$: { $x \in \mathbb{R}, x > 5$ }

7 a As
$$x \to 2$$
, $\frac{5}{x-2 \to 0}$
and hence $h(x) \to \infty$

b To find $h^{-1}(3)$ we can find what element of the domain gets mapped to 3

Suppose h(a) = 3 for some a such that $a \neq 2$

Then
$$\frac{2a+1}{a-2} = 3$$

 $2a+1 = 3a-6$
 $7 = a$
So h⁻¹(3) = 7

c Let
$$y = \frac{2x+1}{x-2}$$
 and find x as a
function of y
 $y(x-2) = 2x+1$
 $yx-2y = 2x+1$
 $yx-2x = 2y+1$
 $x(y-2) = 2y+1$
 $x = \frac{2y+1}{y-2}$
So $h^{-1}(x) = \frac{2x+1}{x-2}$, $\{x \in , x \neq 2\}$

Pure Mathematics 3

Solution Bank

9

$$\frac{2b+1}{b-2} = b$$

$$2b+1 = b(b-2)$$

$$2b+1 = b^2 - 2b$$

$$0 = b^2 - 4b - 1$$

$$b = \frac{4 \pm \sqrt{16+4}}{2} = \frac{4 \pm \sqrt{20}}{2}$$

$$= \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}$$

The elements $2 + \sqrt{5}$ and $2 - \sqrt{5}$ get mapped to themselves by the function.

8 a nm(x) = n(2x+3)
=
$$\frac{2x+3-3}{2}$$

= x

b mn(x) = m
$$\left(\frac{x-3}{2}\right)$$

= $2\left(\frac{x-3}{2}\right) + 3$
= x

The functions m(x) and n(x) are the inverse of each other as mn(x) = nm(x) = x.

$$st(x) = s\left(\frac{3-x}{x}\right)$$
$$= \frac{3}{\left(\frac{3-x}{x}+1\right)}$$
$$= \frac{3}{\left(\frac{3-x}{x}+1\right)}$$
$$= x$$
$$st(x) = t\left(\frac{3}{x+1}\right)$$
$$= \frac{\left(3-\frac{3}{x+1}\right)}{\left(\frac{3}{x+1}\right)}$$
$$= \frac{\left(\frac{3x+3-3}{x+1}\right)}{\left(\frac{3}{x+1}\right)}$$
$$= x$$

The functions s(x) and t(x) are the inverse of each other as st(x) = ts(x) = x

10 a Let $y = 2x^2 - 3$

The domain of $f^{-1}(x)$ is the range of f(x). $f(x) = 2x^2 - 3$, $\{x \in \mathbb{R}, x < 0\}$ has range f(x) > -3

Letting
$$y = 2x^2 - 3 \Rightarrow x = \pm \sqrt{\frac{x+3}{2}}$$

We need to consider the domain of f(x) to determine if *either*

$$f^{-1}(x) = +\sqrt{\frac{x+3}{2}} \text{ or } f^{-1}(x) = -\sqrt{\frac{x+3}{2}}$$

 $f(x) = 2x^2 - 3$ has domain $\{x \in \mathbb{R}, x < 0\}$ Hence $f^{-1}(x)$ must be the negative square root

$$f^{-1}(x) = -\sqrt{\frac{x+3}{2}}, \{x \in \mathbb{R}, x > -3\}$$

Pure Mathematics 3

Solution Bank

10 b If $f(a) = f^{-1}(a)$ then *a* is negative (see graph). Solve f(a) = a $2a^2 - 3 = a$ $2a^2 - a - 3 = 0$ (2a - 3)(a + 1) = 0 $a = \frac{3}{2}, -1$

Therefore a = -1

11 a Range of f(x) is f(x) > -5

b Let y = f(x) $y = e^{x} - 5$ $e^{x} = y + 5$ $x = \ln(y + 5)$ $f^{-1}(x) = \ln(x + 5)$ Range of f(x) is f(x) > -5, so domain of $f^{-1}(x)$ is $\{x \in \mathbb{R}, x > -5\}$

c

- **11 d** Let y = g(x) $y = \ln(x - 4)$ $e^{v} = x - 4$ $x = e^{v} + 4$ $g^{-1}(x) = e^x + 4$ Range of g(x) is $g(x) \in \mathbb{R}$, so domain of $g^{-1}(x)$ is $\{x \in \mathbb{R}\}$ $g^{-1}(x) = 11$ e $e^{x} + 4 = 11$ $e^{x} = 7$ $x = \ln 7$ *x* = 1.95 **12 a** $f(x) = \frac{3(x+2)}{x^2 + x - 20} - \frac{2}{x-4}$ $=\frac{3(x+2)}{(x+5)(x-4)}-\frac{2}{x-4}$ $=\frac{3(x+2)}{(x+5)(x-4)}-\frac{2(x+5)}{(x+5)(x-4)}$ $=\frac{3x+6-2x-10}{2x+6-2x-10}$ (x+5)(x-4) $=\frac{x-4}{(x+5)(x-4)}$ $=\frac{1}{x+5}, x>4$
 - **b** The range of f is $\{f(x) \in \mathbb{R}, f(x) < \frac{1}{9}\}$

c Let
$$y = f(x)$$

$$y = \frac{1}{x+5}$$

$$yx + 5y = 1$$

$$yx = 1 - 5y$$

$$x = \frac{1 - 5y}{y}$$

$$x = \frac{1}{y} - 5$$

$$f^{-1}(x) = \frac{1}{x} - 5$$
The domain of $f^{-1}(x)$ is
$$\{x \in \mathbb{R}, x > \frac{1}{0} \text{ and } x \neq 0\}$$