Exercise 2D

1 a i $y \in \mathbb{R}$
ii Let $y=\mathrm{f}(x)$
$y=2 x+3$
$x=\frac{y-3}{2}$

$$
\mathrm{f}^{-1}(x)=\frac{x-3}{2}
$$

iii The domain of $\mathrm{f}^{-1}(x)$ is $x \in \mathbb{R}$
The range of $\mathrm{f}^{-1}(x)$ is $y \in \mathbb{R}$
iv

b i $y \in \mathbb{R}$
ii Let $y=\mathrm{f}(x)$

$$
\begin{aligned}
y & =\frac{x+5}{2} \\
x & =2 y-5 \\
\mathrm{f}^{-1}(x) & =2 x-5
\end{aligned}
$$

iii The domain of $\mathrm{f}^{-1}(x)$ is $x \in \mathbb{R}$ The range of $\mathrm{f}^{-1}(x)$ is $y \in \mathbb{R}$
iv

c i $y \in \mathbb{R}$
ii Let $y=\mathrm{f}(x)$
$y=4-3 x$
$x=\frac{4-y}{3}$
$\mathrm{f}^{-1}(x)=\frac{4-x}{3}$
iii The domain of $\mathrm{f}^{-1}(x)$ is $x \in \mathbb{R}$ The range of $\mathrm{f}^{-1}(x)$ is $y \in \mathbb{R}$
iv

d i $y \in \mathbb{R}$
ii Let $y=\mathrm{f}(x)$

$$
\begin{aligned}
y & =x^{3}-7 \\
x & =\sqrt[3]{y+7} \\
\mathrm{f}^{-1}(x) & =\sqrt[3]{x+7}
\end{aligned}
$$

iii The domain of $\mathrm{f}^{-1}(x)$ is $x \in \mathbb{R}$
The range of $\mathrm{f}^{-1}(x)$ is $y \in \mathbb{R}$
iv

Pure Mathematics 3

2 a Range of f is $\mathrm{f}(x) \in \mathbb{R}$
Let $y=\mathrm{f}(x)$
$y=10-x$
$x=10-y$
$\mathrm{f}^{-1}(x)=10-x,\{x \in \mathbb{R}\}$
b Range of f is $\mathrm{f}(x) \in \mathbb{R}$
Let $y=\mathrm{g}(x)$

$$
\begin{aligned}
y & =\frac{x}{5} \\
x & =5 y \\
\mathrm{~g}^{-1}(x) & =5 x,\{x \in \mathbb{R}\}
\end{aligned}
$$

c Range of f is $\mathrm{f}(x) \neq 0$
Let $y=\mathrm{h}(x)$
$y=\frac{3}{x}$
$x=\frac{3}{y}$
$\mathrm{h}^{-1}(x)=\frac{3}{x},\{x \neq 0\}$
d Range of f is $\mathrm{f}(x) \in \mathbb{R}$
Let $y=\mathrm{k}(x)$
$y=x-8$
$x=y+8$
$\mathrm{k}^{-1}(x)=y+8,\{x \in \mathbb{R}\}$

3

$\mathrm{g}: x \mid \rightarrow 4-x,\{x \in \mathbb{R}, x>0\}$
g has range $\{\mathrm{g}(x) \in \mathbb{R}, \mathrm{g}(x)<4\}$
The inverse function is $\mathrm{g}^{-1}(x)=4-x$
Now $\{$ Range g$\}=\left\{\right.$ Domain $\left.\mathrm{g}^{-1}\right\}$ and $\{$ Domain g$\}=\{$ Range g$\}$
Hence, $\mathrm{g}^{-1}(x)=4-x,\{x \in \mathbb{R}, x<4\}$
Although $\mathrm{g}(x)$ and $\mathrm{g}^{-1}(x)$ have identical equations, their domains and hence ranges are different, and so are not identical.

4 a i Maximum value of g when $x=3$
Hence $\left\{\mathrm{g}(x) \in \mathbb{R}, 0<\mathrm{g}(x) \leq \frac{1}{3}\right\}$
ii $\mathrm{g}^{-1}(x)=\frac{1}{x}$
iii Domain $\mathrm{g}^{-1}=$ Range g
\Rightarrow Domain $\mathrm{g}^{-1}:\left\{x \in \mathbb{R}, 0<x \leq \frac{1}{3}\right\}$
Range $\mathrm{g}^{-1}=$ Domain g
\Rightarrow Range $\mathrm{g}^{-1}(x):\left\{\mathrm{g}^{-1}(x) \in \mathbb{R}, \mathrm{g}^{-1}(x) \geq 3\right\}$

4 a iv

b i Minimum value of $g(x)=-1$
when $x=0$
Hence $\{g(x) \in \mathbb{R}, g(x) \geq-1\}$
ii Letting $y=2 x-1 \Rightarrow x=\frac{y+1}{2}$
Hence $\mathrm{g}^{-1}(x)=\frac{x+1}{2}$
iii Domain $\mathrm{g}^{-1}=$ Range g
\Rightarrow Domain $\mathrm{g}^{-1}:\{x \in \mathbb{R}, x \geq-1\}$
Range $\mathrm{g}^{-1}=$ Domain g
\Rightarrow Range $\mathrm{g}^{-1}(x):\left\{\begin{array}{r}\mathrm{g}^{-1}(x) \in \square, \\ \mathrm{g}^{-1}(x) \geq 0\end{array}\right\}$
iv

4 c i $\mathrm{g}(x) \rightarrow+\infty$ as $x \rightarrow 2$
Hence $\{\mathrm{g}(x) \in \mathbb{R}, \mathrm{g}(x)>0\}$
ii Letting $y=\frac{3}{x-2} \Rightarrow x=\frac{2 y+3}{y}$
Hence $\mathrm{g}^{-1}(x)=\frac{2 x+3}{x}$
iii Domain $\mathrm{g}^{-1}=$ Range g
\Rightarrow Domain $\mathrm{g}^{-1}:\{x \in \mathbb{R}, x>0\}$
Range $\mathrm{g}^{-1}=$ Domain g
\Rightarrow Range $\mathrm{g}^{-1}(x):\left\{\mathrm{g}^{-1}(x) \in \mathbb{R}, \mathrm{g}^{-1}(x)>2\right\}$
iv

d i Minimum value of $g(x)=2$
when $x=7$
Hence $\{g(x) \in \mathbb{R}, g(x) \geq 2\}$
ii Letting $y=\sqrt{x-3} \Rightarrow x=y^{2}+3$
Hence $\mathrm{g}^{-1}(x)=x^{2}+3$
iii Domain $\mathrm{g}^{-1}=$ Range g
\Rightarrow Domain $\mathrm{g}^{-1}:\{x \in \mathbb{R}, x \geq 2\}$
Range $\mathrm{g}^{-1}=$ Domain g
\Rightarrow Range $\mathrm{g}^{-1}(x):\left\{\mathrm{g}^{-1}(x) \in \mathbb{R}, \mathrm{g}^{-1}(x) \geq 7\right\}$

4 d iv

e i $\quad 2^{2}+2=6$
Hence $\{\mathrm{g}(x) \in \mathbb{R}, \mathrm{g}(x)>6\}$
ii Letting $y=x^{2}+2$

$$
\begin{aligned}
y-2 & =x^{2} \\
x & =\sqrt{y-2}
\end{aligned}
$$

Hence $\mathrm{g}^{-1}(x)=\sqrt{x-2}$
iii Domain $\mathrm{g}^{-1}=$ Range g
\Rightarrow Domain $\mathrm{g}^{-1}:\{x \in \mathbb{R}, x>6\}$
Range $\mathrm{g}^{-1}=$ Domain g
\Rightarrow Range $\mathrm{g}^{-1}(x):\left\{\begin{array}{r}\mathrm{g}^{-1}(x) \in \square, \\ \mathrm{g}^{-1}(x)>2\end{array}\right\}$
iv

f i Minimum value of $\mathrm{g}(x)=0$
when $x=2$
Hence $\{\mathrm{g}(x) \in \mathbb{R}, \mathrm{g}(x) \geq 0\}$
ii Letting $y=x^{3}-8 \Rightarrow x=\sqrt[3]{y+8}$
Hence $\mathrm{g}^{-1}(x)=\sqrt[3]{x+8}$

4 f iii Domain $\mathrm{g}^{-1}=$ Range g
\Rightarrow Domain $\mathrm{g}^{-1}:\{x \in \mathbb{R}, x \geq 0\}$
Range $\mathrm{g}^{-1}=$ Domain g
\Rightarrow Range $\mathrm{g}^{-1}(x):\left\{\begin{array}{l}\mathrm{g}^{-1}(x) \in \square, \\ \mathrm{g}^{-1}(x) \geq 2\end{array}\right\}$
iv

$5 \mathrm{t}(x)=x^{2}-6 x+5,\{\mathrm{x} \in \mathbb{R}, x \geq 5\}$
Let $y=x^{2}-6 x+5$
$y=(x-3)^{2}-9+5 \quad$ (completing the square)
$y=(x-3)^{2}-4$
This has a minimum point at $(3,-4)$

For the domain $x \geq 5, \mathrm{t}(x)$ is a one-to-one function so we can find an inverse function.

Make y the subject:

$$
\begin{aligned}
y & =(x-3)^{2}-4 \\
y+4 & =(x-3)^{2} \\
\sqrt{y+4} & =x-3 \\
\sqrt{y+4}+3 & =x
\end{aligned}
$$

5 (continued)
Domain $\mathrm{t}^{-1}=$ Range t
\Rightarrow Domain $\mathrm{g}^{-1}:\{x \in \mathbb{R}, x \geq 0\}$
Hence, $\mathrm{t}^{-1}(x)=\sqrt{x+4}+3, \quad\{x \in \mathbb{R}, x \geq 0\}$

6 a $\mathrm{m}(x)=x^{2}+4 x+9,\{x \in \mathbb{R}, x>a\}$
Let $y=x^{2}+4 x+9$

$$
\begin{aligned}
& y=(x+2)^{2}-4+9 \\
& y=(x+2)^{2}+5
\end{aligned}
$$

This has a minimum value of $(-2,5)$

For $\mathrm{m}(x)$ to have an inverse it must be one-to-one. Hence the least value of a is -2
b Changing the subject of the formula:

$$
\begin{aligned}
y & =(x+2)^{2}+5 \\
y-5 & =(x+2)^{2} \\
\sqrt{y-5} & =x+2 \\
\sqrt{y-5}-2 & =x
\end{aligned}
$$

Hence $\mathrm{m}^{-1}(x)=\sqrt{x-5}-2$

6 c Domain of $\mathrm{m}^{-1}(x):\{x \in \mathbb{R}, x>5\}$
7 a As $x \rightarrow 2, \frac{5}{x-2 \rightarrow 0}$
and hence $\mathrm{h}(x) \rightarrow \infty$
b To find $h^{-1}(3)$ we can find what element of the domain gets mapped to 3

Suppose $h(a)=3$ for some a such that $a \neq 2$
Then $\frac{2 a+1}{a-2}=3$

$$
2 a+1=3 a-6
$$

$$
7=a
$$

So $h^{-1}(3)=7$
c Let $y=\frac{2 x+1}{x-2}$ and find x as a function of y

$$
\begin{aligned}
y(x-2) & =2 x+1 \\
y x-2 y & =2 x+1 \\
y x-2 x & =2 y+1 \\
x(y-2) & =2 y+1 \\
x & =\frac{2 y+1}{y-2}
\end{aligned}
$$

So $\mathrm{h}^{-1}(x)=\frac{2 x+1}{x-2}, \quad\{x \in \square, x \neq 2\}$

7 d If an element b is mapped to itself, then $\mathrm{h}(b)=b$
$\frac{2 b+1}{b-2}=b$
$2 b+1=b(b-2)$
$2 b+1=b^{2}-2 b$
$0=b^{2}-4 b-1$
$b=\frac{4 \pm \sqrt{16+4}}{2}=\frac{4 \pm \sqrt{20}}{2}$
$=\frac{4 \pm 2 \sqrt{5}}{2}=2 \pm \sqrt{5}$
The elements $2+\sqrt{5}$ and $2-\sqrt{5}$ get mapped to themselves by the function.

8 a $\mathrm{nm}(x)=\mathrm{n}(2 x+3)$

$$
\begin{aligned}
& =\frac{2 x+3-3}{2} \\
& =x
\end{aligned}
$$

b $\operatorname{mn}(x)=\mathrm{m}\left(\frac{x-3}{2}\right)$

$$
\begin{aligned}
& =2\left(\frac{x-3}{2}\right)+3 \\
& =x
\end{aligned}
$$

The functions $\mathrm{m}(x)$ and $\mathrm{n}(x)$ are the inverse of each other as
$\mathrm{mn}(x)=\mathrm{nm}(x)=x$.

$$
9 \begin{aligned}
\operatorname{st}(x) & =\mathrm{s}\left(\frac{3-x}{x}\right) \\
& =\frac{3}{\left(\frac{3-x}{x}+1\right)} \\
& =\frac{3}{\left(\frac{3-x+x}{x}\right)} \\
& =x \\
\mathrm{st}(x) & =\mathrm{t}\left(\frac{3}{x+1}\right) \\
& =\frac{\left(3-\frac{3}{x+1}\right)}{\left(\frac{3}{x+1}\right)} \\
& =\frac{\left(\frac{3 x+3-3}{x+1}\right)}{\left(\frac{3}{x+1}\right)} \\
& =x
\end{aligned}
$$

The functions $\mathrm{s}(x)$ and $\mathrm{t}(x)$ are the inverse of each other as $\operatorname{st}(x)=\operatorname{ts}(x)=x$

10 a Let $y=2 x^{2}-3$
The domain of $\mathrm{f}^{-1}(x)$ is the range of $\mathrm{f}(x)$.
$\mathrm{f}(x)=2 x^{2}-3,\{x \in \mathbb{R}, x<0\}$
has range $\mathrm{f}(\mathrm{x})>-3$
Letting $y=2 x^{2}-3 \Rightarrow x= \pm \sqrt{\frac{x+3}{2}}$
We need to consider the domain of $\mathrm{f}(x)$ to determine if either

$$
\mathrm{f}^{-1}(x)=+\sqrt{\frac{x+3}{2}} \text { or } \mathrm{f}^{-1}(x)=-\sqrt{\frac{x+3}{2}}
$$

$\mathrm{f}(x)=2 x^{2}-3$ has domain $\{x \in \mathbb{R}, x<0\}$
Hence $\mathrm{f}^{-1}(x)$ must be the negative square root
$\mathrm{f}^{-1}(x)=-\sqrt{\frac{x+3}{2}},\{x \in \mathbb{R}, x>-3\}$

10 b If $\mathrm{f}(a)=\mathrm{f}^{-1}(a)$ then a is negative (see graph).
Solve $\mathrm{f}(a)=a$

$$
\begin{aligned}
& 2 a^{2}-3=a \\
& 2 a^{2}-a-3=0 \\
&(2 a-3)(a+1)=0 \\
& a=\frac{3}{2},-1
\end{aligned}
$$

Therefore $a=-1$

11 a Range of $\mathrm{f}(x)$ is $\mathrm{f}(x)>-5$
b Let $y=\mathrm{f}(x)$

$$
\begin{aligned}
y & =\mathrm{e}^{x}-5 \\
\mathrm{e}^{x} & =y+5 \\
x & =\ln (y+5) \\
\mathrm{f}^{-1}(x) & =\ln (x+5)
\end{aligned}
$$

Range of $\mathrm{f}(x)$ is $\mathrm{f}(x)>-5$,
so domain of $\mathrm{f}^{-1}(x)$ is $\{x \in \mathbb{R}, x>-5\}$

c

11 d Let $y=\mathrm{g}(x)$

$$
\begin{aligned}
y & =\ln (x-4) \\
\mathrm{e}^{y} & =x-4 \\
x & =\mathrm{e}^{y}+4
\end{aligned}
$$

$$
\mathrm{g}^{-1}(x)=\mathrm{e}^{x}+4
$$

Range of $\mathrm{g}(x)$ is $\mathrm{g}(x) \in \mathbb{R}$, so domain of $\mathrm{g}^{-1}(x)$ is $\{x \in \mathbb{R}\}$
e $\quad \mathrm{g}^{-1}(x)=11$
$\mathrm{e}^{x}+4=11$
$\mathrm{e}^{x}=7$
$x=\ln 7$
$x=1.95$

$$
\text { 12 a } \begin{aligned}
\mathrm{f}(x) & =\frac{3(x+2)}{x^{2}+x-20}-\frac{2}{x-4} \\
& =\frac{3(x+2)}{(x+5)(x-4)}-\frac{2}{x-4} \\
& =\frac{3(x+2)}{(x+5)(x-4)}-\frac{2(x+5)}{(x+5)(x-4)} \\
& =\frac{3 x+6-2 x-10}{(x+5)(x-4)} \\
& =\frac{x-4}{(x+5)(x-4)} \\
& =\frac{1}{x+5}, x>4
\end{aligned}
$$

b The range of f is
$\left\{\mathrm{f}(x) \in \mathbb{R}, \mathrm{f}(x)<\frac{1}{9}\right\}$
c Let $y=\mathrm{f}(x)$

$$
y=\frac{1}{x+5}
$$

$$
\begin{aligned}
y x+5 y & =1 \\
y x & =1-5 y \\
x & =\frac{1-5 y}{y} \\
x & =\frac{1}{y}-5 \\
\mathrm{f}^{-1}(x) & =\frac{1}{x}-5
\end{aligned}
$$

The domain of $\mathrm{f}^{-1}(x)$ is $\left\{x \in \mathbb{R}, x>\frac{1}{9}\right.$ and $\left.x \neq 0\right\}$

